(M) A Splitting Disagreement (1/1) [Solution]

Q1. Match each algorithm in the table ("Alg A" to "Alg C") to its name ("Baseline", "Pavan's algorithm", or "Arun's algorithm"): Baseline $=\mathbf{A} \quad$ Pavan $=\mathbf{C} \quad$ Arun $=\mathbf{B}$

Q2. The output is still the same: $\quad[0,0,1,0,0,1,0,0,0,0,0,0,1]$
But now the target is:
[0,0,1,0,0,1,0,0,0,1,0,0,1]
So we have: TP: 3, FP: 0, FN: 1.
And thus F1-score of Arun's algorithm $=0.86$

Q3. (a) Pavan's algorithm:

Final consonant:1

(b) Arun's algorithm: This one is tricky. It needs to handle the scenario where the last V in one V-FC-IC-V template is the first V in another. It also needs to handle cases where the last V in a $V-F C-I C-V$ template is the end of the input; or where $V-F C-I C-V$ is started but not finished, with the sequence ending partway through. Abbreviations used here: Punct = punctuation; FC = final consonant. IC = initial consonant. $V=$ vowel.

