(R) GloVe Compartment (1/3) [Solution]

R1. Answers:

1. G
2. K
3. D
4. F
5. H
6. C
7. B
8.1
8. A
9. J
10. E

Explanation:

The words man and woman are given as examples. Those 2 words mean the same thing except that they have different genders. If we look at the vectors that are provided for them (which are [0.5, 0.9, 0.3, 0.3] for man and $[0.5,0.9,0.1,0.5]$ for woman), we see that they have the same first 2 elements, then the last 2 elements differ slightly: the $3^{\text {rd }}$ element is 0.3 for man and 0.1 for woman, while the $4^{\text {th }}$ element is 0.3 for man and 0.5 for woman.

We've also been given daughter as an example. Based on what we've seen about man and woman, it seems like a good place to start would be to try to figure out which vector goes with son, because we have daughter and it seems reasonable to expect that son and daughter are related in the same way that man and woman are. We observed that man and woman have the same first 2 elements as each other, so let's start by assuming that son has the same first 2 elements as daughter: 0.5 and 0.7 . Thus, son would be one of the following options:

$$
\begin{aligned}
& {[0.5,0.7,0.4,0.1]} \\
& {[0.5,0.7,0.2,1.1]} \\
& {[0.5,0.7,0.4,0.9]}
\end{aligned}
$$

But which one? We also saw that the $3^{\text {rd }}$ element for man was 0.2 plus the $3^{\text {rd }}$ element for woman. Thus, perhaps we can expect that the $3^{\text {rd }}$ element of son should be 0.2 plus the $3^{\text {rd }}$ element of daughter, giving 0.4 - narrowing it down to the first and third of our options. Finally, we saw that the $4^{\text {th }}$ element of man was the $4^{\text {th }}$ element of woman minus 0.2 ; so, the $4^{\text {th }}$ element of son is probably the $4^{\text {th }}$ element of daughter minus 0.2 , or $0.3-0.2=0.1$. Thus, we conclude that son $=[0.5,0.7,0.4,0.1](2=K)$. More generally, we've also figured out that, for a pair of words that differ only in gender, their vectors will differ by $[0,0,0.2,-0.2]$.

What other vector pairs do we have that have this difference of $[0,0,0.2,-0.2]$? We have:

$$
\begin{aligned}
& 3=[0.5,0.9,0.3,-0.5] \text { and } 9=[0.5,0.9,0.1,-0.3] \\
& 11=[0.5,0.7,0.4,0.9] \text { and } 4=[0.5,0.7,0.2,1.1] \\
& 5=[0.5,0.8,0.9,1.3] \text { and } 7=[0.5,0.8,0.7,1.5] \\
& 6=[0.5,0.8,0.9,0.5] \text { and } 10=[0.5,0.8,0.7,0.7]
\end{aligned}
$$

We also have 4 pairs of male/female words to account for: boy/girl, king/queen, prince/princess, father/ mother. As leftovers, we also have the words person and ruler, and the vectors $1=[0.5,0.9,0.2,0.4]$ and $8=$ $[0.5,0.8,0.8,1.4]$. Let's try to match these leftovers up. If you look closely, you'll notice that the vector $1=$ $[0.5,0.9,0.2,0.4]$ is exactly halfway between the vector for man and the vector for woman. Thus, perhaps this vector goes with a word that is in between man and woman in meaning, which is most likely person (rather than ruler). This leaves our last leftover, $[0.5,0.8,0.8,1.4]$, to mean ruler. Thus, we can match up $1=$ person $=\mathrm{G}$, and $8=$ ruler $=\mathrm{I}$.

(R) GloVe Compartment (2/3) [Solution]

Since person was halfway between woman and man, we can expect ruler to be halfway between king and queen. Looking at the pairs of vectors listed above, this would be true if $k i n g=5$ and queen $=7$.

If we look at the pairs we have left, we might notice that there is another type of relationship here: not just male/female pairs, but also adult/children pairs. That is, we might expect analogies of the form queen is to princess as mother is to daughter. How could our remaining vectors be assigned to make such analogies work systematically with the vectors? Let's take a look again at the pairs we've figured out and the pairs that are left:

Pairs figured out:

$$
\begin{aligned}
& \text { son }=[0.5,0.7,0.4,0.1], \text { daughter }=[0.5,0.7,0.2,0.3] \\
& \text { man }=[0.5,0.9,0.3,0.3] \text {, woman }=[0.5,0.9,0.1,0.5] \\
& \text { king }=[0.5,0.8,0.9,1.3], \text { queen }=[0.5,0.8,0.8,1.4]
\end{aligned}
$$

Pairs still left:

$$
\begin{aligned}
& 3=[0.5,0.9,0.3,-0.5] \text { and } 9=[0.5,0.9,0.1,-0.3] \\
& 11=[0.5,0.7,0.4,0.9] \text { and } 4=[0.5,0.7,0.2,1.1] \\
& 6=[0.5,0.8,0.9,0.5] \text { and } 10=[0.5,0.8,0.7,0.7]
\end{aligned}
$$

Note in particular that, of the pairs still left, we have one pair with 0.9 in the second spot, one with 0.7 in the second spot, and one with 0.8 in the second spot. This could make these pairs match up nicely with the pairs that are already figured out, where the child and adult versions of a word have the same second element. Thus, we can match up that $3 / 9=$ boy/girl; $11 / 4=$ father/mother; and $6 / 10=$ prince/princess. Overall, this gives us that and adult version of a word minus a child version of a word will be $[0,0,0,0.8]$.

R2. Answers:
12. N
13. Q
14. L or U
15. O
16. R
17. M
18. U or L
19. T
20. P
21. S

Explanation:

For R1, we figured out 2 things that will be important here:
(a) When words form an analogy " A is to B as C is to D ", their vectors will have a relationship of the form $A-B=C-D$.
(b) If a word Y is in between words X and Z in meaning, then the vector for Y will be halfway between the vectors for X and Z.

Here, there is one more complicating factor: 2 of our words (second and third) have 2 different relevant definitions. Let's pretend that these relevant definitions were 2 different words: second ${ }_{\text {time }}$ meaning "one sixtieth of a minute" vs. second ${ }_{\text {list }}$ meaning "after first"; and third $_{\text {fraction }}$ meaning "one third" vs. third list meaning "after second." Then fact (a) gives us:

```
second time - clock = millibar - barometer
second list }-\mathrm{ two = first - one
thirdfraction}-three = half - two
third}\mp@subsup{|}{\mathrm{ ist }}{}\mathrm{ - three = first - one
```


(R) GloVe Compartment (3/3) [Solution]

Solving for each second or third word gives:
second $_{\text {time }}=$ millibar - barometer + clock
second $_{\text {list }}=$ first - one + two
third $_{\text {fraction }}=$ half - two + three
third $_{\text {list }}=$ first - one + three
Based on fact (b) (and also on the hint given in R3), let's now assume that the vector for second will be halfway between the vectors for second ${ }_{\text {time }}$ and second $l_{\text {list }}$, and similarly for third. That is:

```
second = 0.5(second dime }+\mp@subsup{\mathrm{ second}}{\mathrm{ list }}{}
third}=0.5(\mp@subsup{\mathrm{ third}}{\mathrm{ fraction }}{}+\mp@subsup{\mathrm{ third}}{\mathrm{ list }}{}
```

Plugging in from above gives:

```
second \(=0.5\) (millibar - barometer + clock + first - one + two)
third \(=0.5\) (half - two + three + first - one + three \()\)
```

Now, with some guess and check, we can find that there are only two ways to match the vectors up to the words that will satisfy both of these equations; either of these ways counts as a correct solution.

R3. Answer:
Third in a list:

$$
[0.4,-0.2,-0.8,0]
$$

One third, the fraction:

$$
[0,-0.2,0.2,-0.4]
$$

Explanation:

Once we've solved R2, we can use the equations given for $\operatorname{third}_{f r a c t i o n}$ and third $_{\text {list }}$ to figure out what these two vectors would be.

R4. Answer:
(a) is nurse, (b) is doctor.

Explanation:

Words encode gender-related properties as follows: For a pair of words that are identical except for gender (e.g., woman and man), the vector for the female word minus the vector for the male word will equal [$0,0,-$ $0.2,0.2$]. (Equivalently, the male word minus the female word will be [$0,0,0.2,-0.2$). That is, gender is encoded via the difference between 2 vectors having that specific value. As the doctor/nurse example shows, these differences do not always reflect true gender differences, but instead sometimes reflect statistical or societal biases in terms of which roles tend to be held by members of particular genders.

