(E) Use the Force (I/2)

EI.
a. you must go
b. I think this one is strong with the force
c. please don't forget to pick up milk before coming home tonight

E2.
a. [Use < [force Luke] the >]
b. <Luke < [the force] Use >> MORE POSSIBLE
c. < Luke < force < the Use \ggg MORE POSSIBLE
d. NOT POSSIBLE
e. < [the < Luke force >] Use >

E3. 24 (4!)
E4. 22
This can be done by enumeration or by noting that all permutations of 3 items are Yoda-isms and that placing two adjacent sequential items (i.e. the permutation contains e.g. 23 or 32) yields a sequence of 3 items after the first rule application; there are only 2 permutations of 4 items that don't place two adjacent sequential items (24I3 and 3I42).

E5.
a. Permutations: I2 Yoda-isms: I2

Since 4! = 24 (from above) and each sequence has a twin (where the first "do" can stand in for the second) we can divide by 2 . Any sequence is identical to the one where I and 3 are swapped; it can be seen that the two non-Yoda-ism cases are equivalent to Yoda-ism cases so all are Yoda-isms.
b. Permutations: 120 Yoda-isms: 90
$5!=120$ Note that any sequence of 4 items in either of the 2 bad- 4 patterns (call them a and b) will result in a fail, regardless of where the 5th item is placed. So 52413,2541324I35. But let the sequence " 1235 " map to " 1234 " and then its permutation, " $25 I 3$ " is non-Yoda-ism no matter where the 4 is placed. 5 sets of 4 items $\times 5$ configurations of those 4 (i.e. where to place the 5 th) $\times 2$ patterns $=50$. But some of those 50 are duplicates. Note:
24133142
25133152
25144152
35144153
35244253
(the sequence of 4 items in configurations a and b). Each vertical pair contains 2 duplicates. E.g. 2413 and 2513 both yield 25413 and 24513 . That's 4 pairs $\times 2$ duplicates $\times 2$ configurations $=16$ duplicates. And there are 4 "twins" between configurations a and b ; each yields a single duplicate:
24I3-4I53 (24I53)
25I3-4253 (425I3)
3524-3152 (31524)
35I4-3142 (35I42)
Note 2514 and 4152 are not twins, so $50-16-4=30$, which are the non-Yoda-ism permutations. 120-30=90

(E) Use the Force (2/2)

c. Permutations: 60 Yoda-isms: 52
$5!/ 2=60$ per above. From the above table note that any sequence of 4 containing both 3 and 4 will have identical patterns that are Yoda-isms (e.g. $2413=2314$, which is a Yoda-ism, no matter where the 5 is placed). That leaves $25 I 3$ and 3152 ($2514 / 4152$ are redundant to them). That's $5 \times 2=10$ cases, but of those 10 the placement of the 4 on either side of the 3 are identical, so eliminate $2.60-10-2=52$.

