

The Feldberg Family Foundation

Carnegie Mellon

The Association for Computational Linguistics North American Chapter

LOCKHEEDMARTIN

mozilla
SIGIR

MASCO

 ҮАНОО!
The Eighth Annual

North American Gomputational Linguisties Olympiad
2014

www.naclo.cs.cmu.edu

Invitational Round

March 13, 2014

Welcome to the eighth annual North American Computational Linguistics Olympiad! You are among the few, the brave, and the brilliant, to participate in this unique event. In order to be completely fair to all participants across North America, we need you to read, understand, and follow these rules completely.

Rules

1. The contest is five hours long and includes nine problems, labeled I to Q, divided into two parts - one before lunch and one after.
2. Follow the facilitators' instructions carefully.
3. If you want clarification on any of the problems, talk to a facilitator. The facilitator will consult with the jury before answering.
4. You may not discuss the problems with anyone except as described in items $3 \& 12$.
5. Each problem is worth a specified number of points, with a total of 100 points. Make sure to fill out all the answer boxes properly. You are expected to include explanations for most problems in this round.
6. We will grade only work in this booklet. All your answers should be in the spaces provided in this booklet. DO NOT WRITE ON THE BACK OF THE PAGES.
7. Write your name and registration number on each page: Here is an example:

Jessica Sawyer
\#850
8. The top 100 participants (approximately) across the continent in the open round will be invited to the second round.
9. Each problem has been thoroughly checked by linguists and computer scientists as well as students like you for clarity, accuracy, and solvability. Some problems are more difficult than others, but all can be solved using ordinary reasoning and some basic analytic skills. You don't need to know anything about linguistics or about these languages in order to solve them.
10. If we have done our job well, very few people will solve all these problems completely in the time allotted. So, don't be discouraged if you don't finish everything.
11. If you have any comments, suggestions or complaints about the competition, we ask you to remember these for the web-based evaluation. We will send you an e-mail shortly after the competition is finished with instructions on how to fill it out.

12. DO NOT DISCUSS THE PROBLEMS UNTIL THEY HAVE BEEN POSTED ONLINE! THIS MAY BE SEVERAL WEEKS AFTER THE END OF THE CONTEST.

Oh, and have fun!

NACLO 2014 Organizers

Program Committee:
Susan Barry, Manchester Metropolitan University
Aleka Blackwell, Middle Tennessee State University
Jordan Boyd-Graber, University of Maryland Bozhidar Bozhanov, Ontotext
Alan Chang, Princeton University
John DeNero, Google and University of California, Berkeley
Jason Eisner, Johns Hopkins University
Dominique Estival, University of Western Sydney
Matt Gardner, Carnegie Mellon University
Anatole Gershman, Carnegie Mellon University Linus Hamilton, Massachusetts Institute of Technology
Adam Hesterberg, Massachusetts Institute of Technology
Dick Hudson, University College London
Alex Iriza, Princeton University
Rowan Jacobs, University of Chicago Wesley Jones, University of Chicago
Mary Laughren, University of Queensland Lori Levin, Carnegie Mellon University
Patrick Littell, University of British Columbia (co-chair)
Tom McCoy, Yale University
Rachel McEnroe, University of Chicago
David Mortensen, University of Pittsburgh
Babette Newsome, Aquinas College
David Palfreyman, Zayed University
James Pustejovsky, Brandeis University
Dragomir Radev, University of Michigan (co-chair)
Verna Rieschild, Macquarie University
Catherine Sheard, University of Oxford
Ben Sklaroff, University of California, Berkeley
Harold Somers, All Ireland Linguistics Olympiad
Chelsea Voss, Massachusetts Institute of Technology
Problem Credits:
Problem I: Catherine Sheard
Problem J: Tom McCoy
Problem K: David Mortensen
Problem L: Jordan Boyd-Graber
Problem M: David Palfreyman
Problem N: Adam Hesterberg
Problem O: Jonathan Kummerfeld, Aleka Blackwell, and Patrick Littell Problem P: Jonathan Kummerfeld, Aleka Blackwell, and Patrick Littell Problem Q: Mary Laughren

NACLO 2014 Organizers (cont'd)

Organizing Committee:
Mary Jo Bensasi, Carnegie Mellon University Aleka Blackwell, Middle Tennessee State University
Janis Chang, University of Western Ontario Josh Falk, University of Chicago Eugene Fink, Carnegie Mellon University Matt Gardner, Carnegie Mellon University Adam Hesterberg, Massachusetts Institute of Technology Alex Iriza, Princeton University Ann Irvine, Johns Hopkins University Wesley Jones, University of Chicago Aaron Klein, Harvard University Andrew Lamont, Eastern Michigan University Lori Levin, Carnegie Mellon University (chair)
Jeffrey Ling, Harvard University
Patrick Littell, University of British Columbia
Tom McCoy, Yale University Rachel McEnroe, University of Chicago Graham Morehead, University of Maine David Mortensen, University of Pittsburgh
David Penco, University of British Columbia James Pustejovsky, Brandeis University Dragomir Radev, University of Michigan Julia Workman, University of Montana
Yilu Zhou, Fordham University
\section*{Website and Registration:}
Graham Morehead, University of Maine
US Team Coaches:
Dragomir Radev, University of Michigan (head coach) Lori Levin, Carnegie Mellon University (coach)
Canadian Coordinator and Team Coach:
Patrick Littell, University of British Columbia

NACLO 2014 Organizers (cont'd)

Contest Site Coordinators:

USA
Bemidji State University: Porter Coggins
Brandeis University: James Pustejovsky
Brigham Young University: Deryle Lonsdale
Carnegie Mellon University: Lori Levin, David Mortensen
Central Connecticut State University: Seunghun Lee, Matthew Ciscel, Leyla Zidani-Eroglu
College of William and Mary: Ann Reed
Columbia University: Kathy McKeown, Amy Cooper
Cornell University: Abby Cohn, Sam Tilsen
Dartmouth College: Sravana Reddy
Georgetown University: Daniel Simonson
Johns Hopkins University: Mark Dredze
Massachusetts Institute of Technology: Adam Hesterberg, Chelsea Voss
Middle Tennessee State University: Aleka Blackwell
Minnesota State University, Mankato: Rebecca Bates, Dean Kelley
Northeastern Illinois University: Judith Kaplan-Weinger, Kenneth Konopka
Ohio State University: Micha Elsner, Julie McGory, Michael White
Princeton University: Alan Chang, Christiane Fellbaum, Alex Iriza, Mark Tengi
San Jose State University: Hahn Koo, Roula Svorou
Stanford University: Sarah Yamamoto
Stony Brook University: Yejin Choi, Kristen La Magna, Lori Repetti
Union College: Kristina Striegnitz, Nick Webb
University of Alabama at Birmingham: Thamar Solorio
University of Colorado at Boulder: Silva Chang
University of Illinois at Urbana-Champaign: Julia Hockenmaier, Ryan Musa
University of Maine: George Markowsky, Graham Morehead
University of Memphis: Vasile Rus
University of Michigan: Steve Abney, Sally Thomason
University of North Carolina, Charlotte: Wlodek Zadrozny
University of North Texas: Rodney Nielsen, Genene Murphy
University of Pennsylvania: Cheryl Hickey
University of Rochester: Mary Swift
University of Southern California: David Chiang
University of Texas: Stephen Wechsler
University of Texas at Dallas: Vincent Ng
University of Washington: Jim Hoard, Luke Zettlemoyer
University of Wisconsin, Madison: Steve Lacy, T.R. Fitz-Gibbon
University of Wisconsin, Milwaukee and Marquette University: Steven Hartman Keiser, Jonas Wittke, Angela Sorby, Hanyong Park,
Gabriella Pinter, Joyce Tang Boyland
Western Michigan University: John Kapenga
Western Washington University: Kristin Denham
Yale University: Raffaella Zanuttini, Bob Frank, Aidan Kaplan, Tom McCoy
CANADA
Dalhousie University: Magdalena Jankowska, Vlado Keselj, Armin Sajadi
McGill University: Michael Wagner
Simon Fraser University: Maite Taboada, John Alderete, Cliff Burgess
University of Alberta: Sally Rice
University of British Columbia: Jozina Vander Klok, David Penco
University of Lethbridge: Yllias Chali
University of Ottawa: Diana Inkpen
University of Toronto: Pen Long, Jordan Ho
University of Western Ontario: Janis Chang
High school sites: Dragomir Radev

NACLO 2014 Organizers (cont'd)

Student Assistants:
Sean Bethard, Brandeis University Josh Falk, University of Chicago
Sarah Fox, Eastern Michigan University
Bethany Greenbaum, Brandeis University
Amy Hemmeter, University of Michigan
Gavriel Hirsch, Northwestern University
Aaron Klein, Harvard University
Andrew Lamont, Eastern Michigan University
Jeffrey Ling, Harvard University
Alexa Little, Yale University
Tom McCoy, Yale University
Yiwei Luo, Princeton University
Jenny Nitishinskaya, Harvard University
Catherine Sheard, University of Oxford
Miriam Wong, Brandeis University
Chelsea Voss, Massachusetts Institute of Technology
Booklet Editors:
Andrew Lamont, Eastern Michigan University
Dragomir Radev, University of Michigan
Sponsorship Chair:
James Pustejovsky, Brandeis University
Corporate, Academic, and Government Sponsors:
The Feldberg Family Foundation
Brandeis University
University of Michigan
Carnegie Mellon University
North American Chapter of the Association for Computational Linguistics
Linguistic Society of America
Mozilla
Association for Computing Machinery, SIGIR
Lockheed Martin
Masco
Yahoo!
Many generous individual donors

Special thanks to:

Tatiana Korelsky, Joan Maling, and D. Terrence Langendoen, US National Science Foundation
And the hosts of the 90+ High School Sites
All material in this booklet © 2014, North American Computational Linguistics Olympiad and the authors of the individual problems. Please do not copy or distribute without permission.

NACLO 2014 Sites

As well as more than 90 high schools throughout the USA and Canada

Please scan the booklet beginning with the next page

Contest Booklet

REGISTRATION NUMBER			

Name:
Contest Site: \qquad
Site ID: \qquad
City, State: \qquad
Grade: \qquad
Start Time (part I): \qquad
End Time (part l): \qquad
Start Time (part II): \qquad
End Time (part II): \qquad

Please also make sure to write your registration number and your name on each page that you turn in.

SIGN YOUR NAME BELOW TO CONFIRM THAT YOU WILL NOT DISCUSS THESE PROBLEMS WITH ANYONE UNTIL THEY HAVE BEEN OFFICIALLY POSTED ON THE NACLO WEBSITE IN LATE MARCH.

Signature: \qquad

Part I
 Problems I-N 3 Hours

You may only work on this part before the break

(I) To play or not to play (1/2) [10 points]

Kiswahili is a Bantu language with heavy Arabic influence spoken throughout East Africa. While only about 5 million people speak Kiswahili as their first language, over 60 million people use it in their daily life. Kiswahili is an official language of Tanzania, Kenya, Uganda, the Comoros, and the Democratic Republic of the Congo.
II. Match the words in column A with their translations in column B (each translation will be used exactly once):

	Column A (Kiswahili)	
I.	Atacheza	
2.	Mlifahamu	
3.	Mnapika	
4.	Nilicheza	
5.	Ninapika	
6.	Nitapika	
7.	Tulifahamu	
8.	Unacheza	
9.	Utapika	
IO.	Wanafahamu	
II.	Watapika	
I2.	Walicheza	

	Column B (English)
A	He/she will play
B	I played
C	I cook
D	I will cook
E	They understand
F	They will cook
G	They played
H	We understood
I	Y'all' understood
J	Y'all cook
K	You play
L	You will cook

I2. Match the words in column A with their translations in column B (each translation will be used exactly once):

	Column A (Kiswahili)		Column B (English)	
I.	Hakucheza			
2.	Hamkupika		He/she did not play	
3.	Hatacheza		B	He/she will not cook
4.	Hatapika		C	He/she will not play
5.	Hatukufahamu		D	I did not play
6.	Hatupiki		E	They do not understand
7.	Hawafahamu		F	We did not understand
8.	Huchezi		G	We do not cook
9.	Sikucheza		H	Y'all did not cook

'Y'all is the plural form of you

(I) To play or not to play (2/2)

I3. Now, here is a class of Kiswahili verbs that work slightly differently. Again, match the words in column A with their translations in column B (each translation will be used exactly once):

	Column A (Kiswahili)	
I.	Hamtakula	
2.	Hatupi	
3.	Hawakula	
4.	Hawakupa	
5.	Huchi	
6.	Mlikucha	
7.	Sili	
8.	Unakucha	
9.	Watakupa	

	Column B (English)
A	I do not eat
B	They did not eat
C	They did not give
D	They will give
E	We do not give
F	Y'all feared
G	Y'all will not eat
H	You do not fear
I	You fear

I4. Given that ninatembelea means "I visit" and ninakufa means "I die," translate the following into Kiswahili:

I.	You visit.	
2.	I do not visit.	
3.	Y'all visited.	
4.	We did not visit.	
5.	He/she will visit.	
6.	They will not visit.	

7.	You die.	
8.	I do not die.	
9.	Y'all died.	
I0.	We did not die.	
II.	He/she will die.	
I2.	They will not die.	

(J) Lexicondensed (1/4) [15 points]

Compiling a lexicon (a catalog of words) can be time-consuming and difficult because each individual word has so many potential forms. Suppose that you are dealing with the following words:
view, viewed, viewing, views, review, reviewed, reviewing, reviews, watch, watched, watches, watching, rewatch, rewatches, rewatching, rewatched, wave, waved, waves, waving, rewave, rewaves, rewaved, and rewaving.

Writing all of these forms is tedious; even though you generate a list, you will probably feel listless. Therefore, instead of using this brute force method, you can condense the list with the format shown below:

```
VERBPREFIX
re
\varnothing
```

```
VERBSTEM
```

VERBSTEM
watch
watch
view
view
wave

```
wave
```

```
VERBSUFFIX
```

VERBSUFFIX
ed
ed
s
s
ing
ing
\varnothing

```
\varnothing
```

This setup generates a list of all words that consist of one component of VERBPREFIX followed by one component of VERBSTEM followed by one component of VERBSUFFIX (the \varnothing stands for an empty spot, so a word could have no letters in the VERBPREFIX or VERBSUFFIX slot). The list generated is identical to the brute force list but is much less tedious to create.

There is one major problem, however. The way that this format strings together word components (called morphemes) does not account for spelling changes that may occur along the way. For example, many legitimate words are generated, such as watch, review, and rewaves, but some misspelled words also result, such as watchs and waveing. In order to fix this, you also need to write a set of spelling change rules to describe these changes. The applicable rules in this case are:

```
ch -> che || * s
e -> \varnothing || * [ed | ing]
```

These rules mean "ch turns into che if ch is followed by s" and "e turns into nothing if e is followed by ed or ing."

There are many different ways that this type of rule can be written. Here are a few more examples of such rules and their meanings:

```
u -> w || * Vowel
np -> mp
[l | f | r] -> z || W * [C | p]
```

$t \rightarrow c|\mid$ Consonant $* k f \quad$ (t turns into c if it is between a consonant and kf)
(u turns into w if u is followed by a vowel)
(np always turns into mp)
(t turns into c if it is between a consonant and kf) (each letter l, f, or r will turn into z if it falls between w and either c or p)

(J) Lexicondensed (2/4)

JI. Consider the following lexicon and set of rules. (Note that the rules apply in the order given).

| PARTONE cdn cav | PARTTWO
 rgt
 sks | Spelling Change Rules: vsk -> ko
 nbj -> jirj
 nsk -> jeej
 gt -> e \|| avr *
 j -> res \|| avb *
 j -> tu \|| b *
 gt -> ar
 vb -> yp
 cdj -> b
 c -> cal \|| q * y
 js -> ch
 os -> o \|| ak *
 ak -> jinkcj \|| c *
 cj -> g
 dnr -> ed
 s -> ry \|| o *
 q -> hi \|| * ck
 q -> eu \|| * ca
 ay -> y \|l * p
 qc -> po
 c $->\mathrm{m}\| \|$ * av
 vr -> pl |
| :---: | :---: | :---: |

A. Write the four words generated by the above lexicon and set of rules.

B. If you add two more three-letter entries to the lexicon (one entry in PARTONE and one entry in PARTTWO), the system will generate an additional five words that go together with the four words from Task I. What are the new entries for PARTONE and PARTTWO?
\square

What are the five newly generated words? (Hint: Every rule is used at least once.)
\square

(J) Lexicondensed (3/4)

J2. The following lexicon and incomplete set of spelling change rules was designed to output a list of adjectival forms of country names, as shown in the table on the next page. It works almost exactly as intended: the output of the setup is identical to the "Desired Adjective" column (on the next page) except that it produces the wildly incorrect word "ottruese" in place of "australian."

TASK: Fill in the blanks in the Spelling Change Rules (just write your answers directly in the blanks in the box below). Each blank stands for a single letter. Remember that these rules will produce "ottruese" instead of "australian" and that the rules apply in the order given.

COUNTRY
andorra
australia
bhutan
bolivia
cambodia
chad
chile
china
congo
cuba
cyprus
england
fiji
guyana
indonesia
israel
japan
kenya
mexico
morocco
nauru
netherlands
poland
portugal
rwanda
singapore
sudan
togo
uganda
vietnam
yemen

ENDING Spelling Change Rules
ian

$$
\begin{aligned}
& -{ }^{->}--^{-} \\
& \text {ian }->\varnothing| | t^{*} \\
& --^{->} \varnothing \\
& --{ }^{->} \varnothing| |\left[i^{i} \mid e_{-}^{i}\right]^{*} \\
& ---^{->}---
\end{aligned}
$$

$$
i \rightarrow \varnothing\left|\mid\left[\left.\right|_{-}| |_{-}\left|a_{-}\right|{ }_{-}\right] *\right.
$$

$$
-\quad->\varnothing| | c *
$$

$$
---^{->}----| |_{-}^{*}
$$

$$
--- \text { i a } n \rightarrow>--
$$

$$
ـ_{-}^{->}{ }_{-}^{-}| |[\mathrm{n} \mid \mathrm{m}] \star
$$

(J) Lexicondensed (4/4)

Country	Desired Adjective	Country	Desired Adjective
andorra	andorran	japan	japanese
australia	australian	kenya	kenyan
bhutan	bhutanese	mexico	mexican
bolivia	bolivian	morocco	moroccan
cambodia	cambodian	nauru	nauruan
chad	chadian	netherlands	dutch
chile	chilean	poland	polish
china	chinese	portugal	portuguese
congo	congolese	rwanda	rwandan
cuba	cuban	singapore	singaporean
cyprus	cypriot	sudan	sudanese
england	english	togo	togolese
fiji	fijian	uganda	ugandan
guyana	guyanese	vietnam	vietnamese
indonesia	indonesian	yemen	yemeni
israel	israeli		

(K) Don't be Ukhrul to a Liver that's True (I/2) [10 points]

As you may know, languages form "families" in which languages descended from a common ancestor (ancient language) show systematic similarities and differences. For example English, Dutch and Danish are all from the same language family, and the systematic difference can be seen in the words for brother, mother, father in Dutch (broeder, moeder, vader) and Danish (bror, mor, far). The French words frère, mère and père are also (more distantly) related, and show slightly more complex differences.
Kachai, Tusom, and Ukhrul are three languages from the Tangkhulic subfamily of the Tibeto-Burman family of languages. They are spoken in Manipur state, India. The words from these languages that are given here form sets of three that are descended from the same word in the shared ancestor of the three languages. The Ukhrul words are given in the table on the next page, with their English translations. Kachai and Tusom words are given in no particular order. Write the letters corresponding to the Kachai and Tusom words in proper order in the table on the following page.
Pronunciation notes:

- The small raised h symbol indicates that the preceding consonant is aspirated, i.e. pronounced with an exaggerated puff of air.
- \quad represents a vowel like the first sound of the word approach.
- y represents a velar nasal, the ' $n g$ ' sound in a word like sing.
- $?$ is a glottal stop, the sound between the two syllables of the expression uh-oh.
- \quad is the 'th' sound at the beginning of this.
- \mathfrak{e} represents a vowel somewhere between the ' a ' in cat and the ' o ' in cot.
- x is pronounced like 'ch' in Bach.
- ut is a vowel pronounced like 'oo' in book, but with spread lips, a bit like when you show distaste ugh
- $\tilde{\partial}$ is nasal vowel, pronounced like the 'on' in bon vivant.
- \int is the 'sh' sound in ship
- c is pronounced like 'ch' in church

Kachai				Tusom			
(A)	k^{h} Əŋə ${ }^{\text {th }}$	(K)	kəkwe	(a)	kat ${ }^{\text {h }}$ ue	(k)	Si
(B)	kәp $^{\mathrm{h}} \mathrm{u}$	(L)	Pami	(b)	kotXa	(l)	ma
(C)	mək $^{\mathrm{h}} \mathrm{u}$	(M)	Pame	(c)	mu	(m)	mokSi
(D)	Pamət ${ }^{\text {h}}$ en	(N)	kace	(d)	kəkie	(n)	lua
(E)	Pale	(O)	Pacu	(e)	k^{h} ə甲ie	(o)	PatXa
(F)	k^{h} əmwe	(P)	kət ${ }^{\text {h }}$	(f)	Pəntsuã	(P)	za
(G)	Pat ${ }^{\text {h }}$ i	(Q)	k^{h} mmen	(g)	k^{h} anny	(q)	ci
(H)	$\mathrm{k}^{\mathrm{h}} \mathrm{u}$	(R)	$\mathrm{krt}^{\mathrm{h}} \mathrm{i}$	(h)	k^{h} antsy	(r)	k^{h} วmuã
(I)	kәði	(S)	Pak ${ }^{\text {b }}$ we	(i)	kfie	(s)	makəcuə
())	Pasu	(T)	k^{h} วməni	(i)	kәр $\mathrm{fi}^{\text {i }}$	(t)	kokji

(K) Don't be Ukhrul to a Liver that's True (2/2)

Kachai	Tusom	Ukhrul	English
		kat ${ }^{\text {h }}$ j	awaken
		kək $^{\text {ha }}$	bitter
		kəkaj	break
		kəcuj	burn
		k^{h} әŋај	desire
		k^{h} əŋว ${ }^{\text {h }} \mathrm{u}$	exchange
		luj	field
		mej	fire
		sa	flesh/animal
		Pat ${ }^{\text {h }}$ j	fruit
		mi	human
		$\mathrm{m} \mathrm{k}^{\mathrm{h}} \mathrm{a}$	jaw
		$\mathrm{k}^{\mathrm{h}} \mathrm{j}^{\text {a }}$	knife
		k^{h} əmənu	laugh
		Pamət ${ }^{\text {h }}$ in	liver
		ca	necklace
		k^{h} əmin	ripe
		kat ${ }^{\text {h }}$ j	see
		kəp $^{\text {ha }}$	seek
		tsej	spear

(L) Transducing Runes (1/5) [10 points]

Before the Roman alphabet was introduced to Northern Europe, much of Scandinavia and what is now Great Britain used a writing system called Runic. These symbols have recently gained increasing popularity because the fantasy author J.R.R. Tolkien adapted an Anglo-Saxon Runic writing called Futhorc in his series Lord of the Rings (and The Hobbit).

This problem is about mathematical constructs that we can use to turn Roman text (i.e., what English is written in) into runes. This is not a simple substitution, however, because there is not a one-to-one connection between Roman letters and runes. For example, these words become the following runes. To make things cleaner, we're assuming that every word written in Roman characters is followed by a \# to mark the end of the word. You can assume that every input Latin word will be terminated by a \#, and that this becomes in runes.

Roman	Runic
sat\#	ムR个
eat\#	\uparrow
heat\#	$\forall T$
east\#	$\Psi \square$

Specifically, there are a number of runes that are equivalent to two Roman characters. To keep things simple, we'll start with a very limited alphabet.

The tool that we're going to use is called a transducer, a logical tool that is used in morphological processing (e.g., to remove suffixes and prefixes from words) in natural language processing technology.

(L) Transducing Runes (2/5)

The key components of a transducer are states, transitions, inputs, and outputs. We always start in the "start" state. In the example transducer below, this is the right circle with the label "start" inside it. We transition to different states based on the input that we get.

In this problem, our input is Roman characters. For example, if we're in the "start" state and see either h, a, or t, then we transition from the "start" state to the "start" state (simple!). If, however, we were in the "start" state and saw the character e, we would transition to state "I".

Which transition we use is based on the input we receive. When we transition, we also can output. In the start state,

- if we see h we output \boldsymbol{A};
- if we see a we output \boldsymbol{N};
- if we see t we output \uparrow;
- if we see \# we output $\square_{\text {; }}$
- but if we see e we output nothing.

Transitions are depicted with an arrow. Each arrow has a label that shows the input and output. To the left of the colon (:) is the input, and the output is to the right (possibly empty, as in the case of e in the start state).

Different states can have different transitions; we output different runes based on input. In state "I"; for example, if we then see a, we output Ψ, which allows us to turn the input of e followed by a into the correct rune. Thus, if we're in state "l" it means that we might need to turn a sequence of characters into a single rune, but we won't know for sure until we see the next character.

If you're unclear on the concept, trace eat\# and heat\# through this simple transducer and make sure you get outputs that match the example runes.

(L) Transducing Runes (3/5)

LI. Below is a transducer for the letters a, e, h, s, t, and \#. Given a sequence of Roman characters, give the states that you would visit while transducing those characters. The first is done as an example.

A)	he\#	start	start	I	start			
B)	stash\#	start						
C)	heath\#	start						
D)	thee\#	start						

(L) Transducing Runes (4/5)

L2. We're going to make our transducer a little more complicated, by adding additional runes. The additional runes we'll add correspond to the letters n, g, and $n g$.
$n \nmid$
g X
ng
조

Below is what this transducer looks like. It's getting more complex, so we're not going to show all of it. Instead, we'll show transitions that were in the previous transducer in gray without the inputs and outputs. We also won't give the outputs for some of the transitions; some of the outputs have been replaced by bold, upper-case, underlined Roman letters; you'll fill in those missing runes on the next page.

(L) Transducing Runes (5/5)

What is the correct output for the transitions in the above transducer? Use the numbered runes below. CAUTION: Answers can be repeated, outputs may require more than one rune, and order matters.
(a) $g: \underline{A}$ \qquad (e) $\mathrm{n}: \underline{\mathrm{E}}$
(b) $g: \underline{B}$ \qquad (f) $\mathrm{t}: \underline{\mathrm{G}}$
(c) $\mathrm{h}: \underline{\mathrm{C}}$ \qquad (g) $\mathrm{n}: \underline{\mathrm{H}}$
(d) a : \underline{D}
I. \mathbf{X}
2. 4
3. M
4. F
5. N
6. 4
7. $<$
8. 个

L3. Consider the number of states and transitions in a transducer needed to represent different alphabets. The table has the number of states and transitions for the transducers previously shown (don't forget about the end of the word marked \#).

Transducer	Single Runes		Double Runes		States	Transitions
A	$\begin{array}{ll} \text { F } & \text { (a), } \\ \text { H } & \text { (h), } \end{array}$	$\begin{aligned} & M(\mathrm{e}), \\ & \uparrow(\mathrm{t}) \end{aligned}$	T (ea),	8 (ee)	2	10
B		$\begin{aligned} & M(e), \\ & L(s), \end{aligned}$	$\begin{aligned} & T(e a), \\ & \square(s t), \end{aligned}$	8 (ee), P (th)	4	24
C		$\begin{aligned} & M(\mathrm{e}), \\ & \times(\mathrm{g}), \\ & \text { L }(\mathrm{s}), \end{aligned}$	Ψ (ea), 조 (ng), P (th)	8 (ee), ■ (st),	5	?
D	$\begin{array}{ll} \hline F & (\mathrm{a}), \\ M & (\mathrm{e}), \\ \times & (\mathrm{g}), \\ \mathrm{H} & (\mathrm{~s}), \end{array}$	© (d), N(h), 1 (n), 个 (t)	\uparrow (ea), (nd), ■ (st),	8 (ee), K (ng), p (th)	?	?

A)	How many transitions does transducer C have?	
B)	How many states does transducer D have?	
C)	How many transitions does transducer D have?	

(M) Come to Istanbul (I/I) [IO points]

Turkish is spoken by about 63 million people, of whom most live in Turkey but about 100,000 live in the UK. It is a non-Indo-European language, so it is unrelated to English but related to languages of Central Asia such as Azeri and Uzbek.

Turkish words are built up by adding one or more endings to a root word; the vowels in most word endings vary depending on the vowels in the root word ("vowel harmony"), as you will see in the following examples. Here are some sentences in Turkish, with their English translations. Note:

- The Turkish letters "ş", "ç" and "ı" are pronounced like English "sh", "ch" and the "a" in "above".
- The letters i and i represent different vowels.
- The letter "ğ" is usually silent (like the "gh" in "although").
- Square brackets [] enclose English words that are not directly translated.

Arkadașlarım șehirde mutlu
Baban İstanbul'u seviyor mu?
Fakirler Van'dan İstanbul'a gelmek istiyor
İstanbul en büyük șehir
Eve geliyorlar
Babam "Merhaba! Gel, arkadașımız ol", diyor
Evimizde büyük pencereler var
Pencereden atlyoruz
Ev almak mı istiyorsun?

My friends [are] happy in [the] city.
Does your father like Istanbul?
Poor [people] want to come from [the city of] Van to Istanbul. Istanbul [is the] biggest city.

They come home.
My father says "Hello! Come [and] be our friend".
There are big windows in our house.
We jump from [the] window.
Do you want to buy [a] house?
MI. How would you translate the following into English?

A.	Baban mutlu mu?	
B.	"Șehrimize gel" diyoruz.	
C.	Arkadașım doktor olmak istiyor.	
D.	Fakir evimi seviyorlar mı?	
E.	İstanbul'dan mı geliyorsun?	

M2. The following examples introduce a new pattern. What do you think these examples mean?

A.	Geldiğimde "merhaba" diyorlar.	
B.	Baban geldiğimizden mutlu mu?	
C.	Fakir olduğunu diyorlar.	
D.	Aldı̆̆ın ev büyük mü?	
E.	En mutlu olduğum șehir, Van.	
F.	Fakir olduğumuz halde mutluyuz.	

(N) Hungarian Rocks (I/I) [5 points]

The grid below represents a field divided into a 7×7 grid, aligned north-south and east-west. In some of the squares of the grid are rocks represented by X.

There are four Hungarians - Dorottya, László, Erika, and Balázs - standing in the field, each in a different square not containing a rock, and each facing in one of the four cardinal directions (north, south, east west) not necessarily different from each other. Each person makes some statements describing the positions of the rocks. For instance, Dorottya's first statement means "(Due) east (behind me) there is one stone."

Find each person's place in the field and the direction they are facing. References to directions are to be understood as describing a single line in the field: "due east", "directly behind me", and so on.

	A	B	C	D	E	F	G
1				X			
2			X	X	X		
3							
4	X			X			X
5			X		X		
6							
7				X			

Part 2 Problems O-Q 2 Hours

You may only work on this part after the break

(O) CCG (I/2) [5 points]

One way for computers to understand language is by forming a structure that represents the relationships between words using a technique called Combinatorial Categorial Grammar (CCG). Computer scientists and linguists can use CCG to parse sentences (that is, try to figure out their structure) and then extract meaning from the structure.

As the name suggests, Combinatorial Categorial Grammar parses sentences by combining categories. Each word in a sentence is assigned a particular category; note that / and \backslash are two different symbols:

I	$N P$
books	$N P$
sleep	$S \backslash N P$
enjoy	$(S \backslash N P) / N P$

These categories are then combined in systematic ways. We will not explain how, but we will give you two successful parses...

I	sleep
$N P$	$S \backslash N P$
S	

...and four unsuccessful parses...

I	enjoy
$N P$	$(S \backslash N P) / N P$

If a parse is successful, the sentence is declared "grammatical"; if not, the sentence is declared "ungrammatical".

(O) CCG (2/2)

OI. Using the above examples as evidence, figure out how CCG parses sentences, and describe it briefly here:

O2. In the sentence "I enjoy long books", list all of the categories that, if assigned to "long", make the sentence have a successful parse.

O3. Not every grammatical sentence of English will be declared "grammatical" by the process above. Using only the words "l", "books", "sleep", and "enjoy", form a grammatically correct English sentence that will fail to parse given the categories above. You don't have to use all four of the words.

(P) Combining Categories in Tok Pisin (I/2) [I5 points]

This problem is a follow-up to problem O and has to be solved after that problem. Tok Pisin (also referred to as New Guinea Pidgin or Melanesian Pidgin) is a creole language spoken in the northern mainland of Papua New Guinea and surrounding islands. It is an official language and the mostly widely used language in the country, spoken by over 5 million people.

Many Tok Pisin words come originally from English - its name comes from "talk" and "pidgin"' -- but Tok Pisin isn't just English. It has a distinct grammar and uses these words in different (but systematic!) ways.

PI. Below are sentences in Tok Pisin with a scrambled list of English translations. Match each sentence to its English equivalent.

I.	Brata bilong em i stap rit.	
2.	Ol i stap dringim wara.	
3.	Ol i ken ritim buk bilong mi.	
4.	Em i ritim buk pinis.	
5.	Em i laik rit.	
6.	Susa bilong em i ken rait.	
7.	Susa bilong mi i boilim wara.	
8.	Wara i boil pinis.	

A.	He has read the book.
B.	My sister boils the water.
C.	They can read my book.
D.	His sister can write.
E.	His brother is reading.
F.	The water has boiled.
G.	He wants to read.
H.	They are drinking water.

P2. Translate the following Tok Pisin sentence into English:
Brata bilong mi i stap ritim buk bilong susa bilong mi.

P3. Translate the following English sentence into Tok Pisin:
Their sister wants to write a book.

[^0]
(P) Combining Categories in Tok Pisin (2/2)

P4. Describing these words in terms of their CCG categories (introduced in Problem O) highlights that these aren't English words combined according to English rules, but are Tok Pisin words combined according to Tok Pisin rules.

Match each Tok Pisin word to its CCG category. Some categories will be used more than once. The symbol S_{b} is short for 'Bare Clause'.

I.	bilong	
2.	brata	
3.	boil	
4.	boilim	
5.	buk	
6.	dringim	
7.	em	
8.	i	
9.	ken	
I0.	laik	

II.	mi	
I2.	oI	
I3.	pinis	
I4.	stap	
I5.	raitim	
I6.	rit	
I7.	ritim	
I8.	susa	
I9.	wara	

A.	$N P$
B.	$(N P \backslash N P) / N P$
C.	$(S \backslash N P) /\left(S_{b} \backslash N P\right)$
D.	$\left(S_{b} \backslash N P\right)$
E.	$\left(S_{b} \backslash N P\right) / N P$
F.	$\left(S_{b} \backslash N P\right) \backslash\left(S_{b} \backslash N P\right)$
G.	$\left(S_{b} \backslash N P\right) /\left(S_{b} \backslash N P\right)$

P5. Explain your answer.

(Q) Learning Yidiny (1/2) [20 points]

Yidiny is the language of people whose ancestral lands are in the rain forest country of northeastern Queensland, Australia, south of Cairns. Here are some Yidiny sentences recorded from mother tongue (or first language) speakers of this language. ${ }^{\text {' }}$

Examine sentences (I) to (2I) and try to work out the meaning of each word and why words with the same meaning may have different forms. Sometimes a single word of Yidiny may need to be translated by two - or even several - English words; the converse may also be true. The given translations are in order.
I. Nganji jarral dunggul guluguluugu.
2. Nganjiiny bamaal gugaal mayiigu
3. Wanjiirr nyuniinda mayi?
4. Ngayu banjaar gabay.
5. Ngayu biwuuda minya jaban bagaal.
6. Nganji dugur balgaal jirrgaada.
7. Nganyany jina banggaaldu gundaajinyu.
8. Ngayu waguuja banggaalda gundaal.
9. Nganyany wagujanggu banggaalda gundaal.
10. Nyundu gana nganda guman wiwin.
II. Ngayu nyuniny wawaal.
12. Nganyany bamaal wawaal.
13. Ngayu bama wawaajinyu jambuul.
14. Minyaagu yingu gadang jabaangu.
15. Ngayu bama bunya barrgandanyu.
16. Nganyany bamaal bunyaang barrgandanyu.
17. Ngungu bunya gabaanja janaany.
18. Nganjiinda jaja ngunjuung ngurrangurraal bunyaang.
19. Waguuja dungu bunyaang jinaa baraal.
20. Bunya wagujanda dunguu jinaa baraajinyu.
21. Ngayu bama mandii baraal.

We set up a fish-trap for black bream.
The people called us for food.
How much food have you got?
I followed the road.
I speared an eel with a fish-spear.
We made a hut with grass.
The axe happened to cut my foot.
I cut the man with an axe.
The man cut me with an axe.
You just give me one.
I saw you.
A person saw me.
I happened to see two people.
This (one) is coming for eels.
I passed the woman by.
The woman passed me by.
That woman was standing on the road.
That woman showed us the baby.
The woman kicked the man in the head.
The woman happened to kick the man in the head.
I punched the person.

[^1]
(Q) Learning Yidiny (2/2)

The sentences (A) to (L) below were spoken by a person who is not a native speaker of Yidiny, who was trying to learn Yidiny as a second language. This speaker makes grammatical mistakes. The English sentences indicate what the speaker was trying to say in Yidiny. In each of these ungrammatical sentences (indicated by the asterisk (*)) an incorrect form of one word is used. Your task is to locate the ungrammatical word in each sentence. Copy it into the appropriate column of the table below, and then write the correct form of the word in the column to the right of the incorrect word form. (Don't worry about the Yidiny word order.)
A. *Nyuniny gabay mijil.
B. *Ngayu nyuniny jina banggaaldu gundaal.
C. *Nganjiiny bama bunyaang wawaal.
D. *Wanjiirr ngayu minya?
E. *Bamaal waguuja gabaanja janaany.
F. *Nganji ngungu guluguluugu bagaal.
G. *Bama ngungu dugur balgaal gabaanja.
H. *Nganjiiny ngungu mayi wiwin.

You are blocking the road.
I cut your foot with an axe.
The woman saw us.
How much meat do I have?
The man was standing on the road.
We speared that black bream.
A person made that hut near the road.
Give us that food.
I. *Nyundu bama bunya mandi bagaal biwuudu. You stabbed the woman's hand with a fishing-spear.
J. *Nyundu jina bagaajinyu biwuudu.
K. *Nganji jaja dunguu wawaal.
L. *Ngayu ngungu bunyaang mandii baraal.

You happened to get stabbed in the foot by a fishing-spear.
We saw the child's head.
I punched that woman.

Sentence	Incorrect Word	Corrected Word
A.		
B.		
C.		
D.		
E.		
F.		
G.		
H.		
I.		
J.		
L.		

[^0]: 'A pidgin language is a communicative system developed by two or more groups of people who do not share a common language. Tok Pisin started out as a pidgin but has since developed into a creole, a complex language in its own right.

[^1]: 'Yidiny was described by linguist RMW Dixon in his 1977 book entitled A grammar of Yidiny published by Cambridge University Press. Sentences (I-2I) are from this publication, with the original IPA (phonetic) symbols transliterated.

