

（A）Intuitive Inuit（I／I）

AI．
a．bうケウウDさく
b．$\wedge \dot{C} \supset \bigcap^{9} b^{\text {¢ }}$ LL $\sigma \triangleright \sigma d$
c．$P^{q} J^{c} \dot{R}^{b} \cap^{b}$

e．$\Lambda^{c}{ }^{c} d \zeta \subset \triangleleft^{q} J L \sigma d$

katujijijujut
pitaarutiqarsimaniuniku or pitaarutirkarsimaniuniku
kinggulriikhlutik
makpiqturaliursimavut
piqujalianggumaniku or pirkujalianggumaniku
uqalimaagaliulaursimangmata or urkalimaagaliulaursimangmata
ikjuqtuiviujuni
uvvaluunniit

A2
a．qanniq
${ }^{9} b^{a} \sigma^{9 b}$
b．aput
$\Delta>c$
c．mukluk $\quad ل^{b}{ }^{\mathrm{b}}$
d．umiaq
$\triangleright \Gamma \triangleleft^{q b}$

A3．
a．${ }^{9}$ b ${ }^{96}$ kayak（qajaq）
b． $\mathrm{b} _\subset \quad$ Canada（kanata）
c．$\triangleleft c^{〔} b \quad$ Alaska

(B) A Case of Pali (I/I)

BI.
I. mahāmatto samaṇe pucchati
2. samaṇo nisīdati
3. nisīdanti

B2.
I. The king sits down.
2. The village's king is (a) god. / The king of the village is (a) god.

B3.
I. mahāmatto rāje pucchati
2. gāmo upāsakassa
3. attho lokassa devo hoti

(C) The Heads and Tails of Huffman (I/I)

Frequent letters can be encoded using few coins, while less common letters use more coins. By analyzing the frequency of letters in natural text, Huffman encoding trees can be constructed to encode text as efficiently as theoretically possible (using the fewest coins).

CI. TTTTTTHHTTHTTTHHTHTTTHHTTHHTTHHTTHT Answer: HE FED BEEF HTHTHHTTTHTTHHTHTTTHHTTHHTHTT Answer: A CAGED BED

C2. Answer: TTTTTTHH[A]THTTTTHHTHTT decodes to HEADED (position 7, 8, or 9, orientation H)

C3. MISSISSIPPI
Answer (not unique):
($\mathrm{H}=\mathrm{l}$
$\mathrm{T}=(\mathrm{H}=\mathrm{S}$

$$
\begin{aligned}
& \mathrm{T}=(\mathrm{H}=\mathrm{P} \\
& \mathrm{T}=\mathrm{M}) \mathrm{)})
\end{aligned}
$$

TTTHTHTHHTHTHHTTHTTHH coin count $=2 \mathrm{I}$
ABRACADABRA
Answer:
(H=A
$\mathrm{T}=(\mathrm{H}=(\mathrm{H}=\mathrm{B}$
$\mathrm{T}=\mathrm{C}$)
$T=(H=D$
T=R)))
HTHHTTTHTHTHTTHHTHHTTTTH coin count $=23$

(D) Kwak'wala Word Search (I/I)

'MAGGWAYU	an iron
'LAGGAKW	berry cakes
T'SABAT'SI	bowl for candlefish oil
XIGWAYU	broom
LIBAYU	deck of cards
XIGWAT'SI	dustpan
K'ADAGWAT'SI	envelope
LIP'INUXW	expert card player
YAKK'INUXW	expert knitter
KIT'LINUXW	fisherman
KIDLAT'SI	fishing boat
T'SAPALAS	food for dipping in oil
Y ${ }^{\text {GGAT}}$ 'SI	knitting basket
YAGGAYU	knitting needles
K'ADAKW	letter
K'ADAYU	pen or pencil
YAGGAKW	something knitted, such as a sweater
TLAMKA	to be proud, to be a snob
KITLA	to catch fish with a net
T'SAPA	to dip food in candlefish oil
'MAKWA	to iron something
YAKA	to knit
'LAEKA	to make berry cakes
LIPA	to play cards
XIKWA	to sweep
K'ATA	to write
TLAMMGAT'SI	tourist boat, cruise ship, ferry
YAKKALAS	wool
'MAKWALAS	wrinkled clothes
K'AT'INUXW	writer

(E) Shaw Business(I/I)

EI.

Shavian Alphabet		Roman Alphabet
	A4	this is Shavian
	BI	the cat slept
	C5	to learn
	D2	we have cats
	E3	for ever

E2.

Eve $=\quad: 49-21-38$
Ian $=\quad: 49-41-45$
turn left to sit $=$
sleep for Steve $=$
: 2-39-45-I5-I8-4-2-2-6-17-2
: 6-|5-2|-I-4-49-6-2-2|-38

E3.
J is " f " and is " v "
is " s ", so following the analogy, must be " z ".

E4.

Following task d, Shavian characters are paired in their voiced - unvoiced matching consonants. If " p " is then "b" must be a reversal of this. must be the sign for "b". : 47

(F) Grammar Rules! (I/I)

I. Sentences that the CFG can generate: B, D, G, I, K, M, Q
3. Redundant rule: 21 (VP -> IV PP) given that it is already generated by combination of 17 (VP -> IV) and 2 (VP -> VP PP)

(G) Phoenician Fun (I/I)

GI.

Aynuk	F
Beritos	J
Ebla	G
Halab	B
Megiduw	D
Palmyra	unmatched
Qadesh	I
Riblah	C
Tripoli	unmatched
Tsarephath	A

G2.
For the two unmatched cities (Palmyra and Tripoli), we cannot know the intervening vowels but the consonants (including the special case for A) are as follows:
(E) TH-D-M-R
(H) A-TH-R

* some pairs of characters like $\mathrm{TH}, \mathrm{TS}, \mathrm{SH}, \mathrm{PH}$ represent a single sound
* the script is right to left
* no vowels

(H) Twodee (I/I0)

HI. Our boxes below indicate just the phrases, as revealed by the Twodee layout, that are key to determining the choice of meaning. Overlapping boxes are used when the Twodee layout is "unclear" and allows muttiple possible meanings.
A.

B.

I. The trademarked group known as "Jack and jill" ascended the hill.
2. Jack ascended the hill with his trademarked companion, "jill."
3. The citizens hugged the soldiers and cheered the soldiers.
4. The citizens hugged each other and cheered the soldiers.
5. The citizens hugged the soldiers and cheered.

(H) Twodee (2/I0)

C.

6. It's not because his sweetheart was rich that John married her.
7. Because his sweetheart was rich, John didn't marry her.

D.

8. Alice used the faulty data to attack the scientists.

9. Alice attacked the scientists who had faulty data.

(H) Twodee (3/I0)

10. Heavy farmers and heavy cattle are forbidden on this ramp.
II. Heavy farmers and cattle farmers are forbidden on this ramp.
12. Cattle and heavy farmers are forbidden on this ramp.
13. Cattle and heavy farmers are on this forbidden ramp.

(H) Twodee (4/I0)

F. Twodee sentences \#I and \#3 have the same meanings, as they are merely different written arrangements of the same phrases. Similarly for \#2 and \#4.

Twodee sentences \#I and \#3 have meaning 16 if used in a context where you already wanted to shake yourself, but meaning 15 if used in a context where you didn't. Since the same sentence structure would be used for both contexts, the Twodee writing system cannot be used to distinguish between 15 and 16 , any more than it can be used to distinguish whether the raisins are dark raisins or golden raisins. Twodee can clarify sentence structure but can't remove every last vestige of ambiguity from language.

14. Please add the raisins by shaking them.

16. If you are going to shake yourself, please do it in the raisins.

(H) Twodee (5/I0)

G.

H.

2I. The business sold things to the bank that was bought from the government.
22. The business that was sold to the bank bought things from the government.
17. The hut of the dark magician spooked me out.
18. The dark hut of the magician spooked me out.
19. Out by the hut of the dark magician, something spooked me.
20. Out by the dark hut of the magician, something spooked me.

The		bought	from the government.
business	sold to the bank		

(H) Twodee (6/I0)

H2. Here is one correct answer (again, we've used boxes to indicate the most important phrases for you):

Zooey	left	her	husband	Death Cab for Cutie frontman Deschanel 				

And for good measure, here is a way of writing the editor's misinterpretation:

Zooey	left	her	husband	for	Cutie	frontman		
Deschanel		Death	Cab		Ben	Gibbard.		

(H) Twodee (7/I0)

H3. In the original 8-word sentence, there are 7 places where two phrases are glued together horizontally. In each case, they could instead have been glued together vertically. Since there are 7 two-way choices, there are $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=128$ ways to write the sentence.

Each of these 128 sequences of choices really does result in a different two-dimensional layout. Why? Any two different sequences must differ on at least one specific choice. For example, they might differ on whether "A computer" will be combined horizonally or vertically with "can count things." Regardless of the other choices, the first sequence must result in a layout where " A " is in the same row as "can" (but a different column), while the second sequence must result in a layout where "A" is in the same column as "can" (but a different row). So the two sequences cannot possibly give the same layout.

In general, a sentence with $\mathrm{N}+\mathrm{I}$ words is always built up by gluing N pairs of phrases together, so there are always 2^{N} ways to write it in Twodee -- provided that all of the $\mathrm{N}+\mathrm{I}$ words are different. (What if they're not? Can you construct a short sentence with fewer than 2^{N} layouts?)

H4. A. The correct answer is 6 . Incorrect answers that might get some credit include 8, 12, and 16; these overlook the fact that some divisions give rise to the same spoken ordering.

Explanation: The top-level division must be one of the following.

a	b	c
e		g
i	j	k

Let's consider the first configuration. It doesn't matter how we divide up the bottom half ($\mathbf{i j} \mid \mathbf{k}$ or $\mathbf{i} \mid \mathbf{j} \mathbf{k}$), because the spoken order is $\mathbf{i j k}$ in either case. The top half can only be divided up vertically because the second row (e [space] g) is not a valid Twodee phrase (there is no way to build it with the space). The possible ways of dividing the top half are

Spoken order: abecgijk

Spoken order: aebcgijk

Spoken order: aebcgijk (same)
which result in the spoken word orders shown underneath each drawing.

(H) Twodee (8/I0)

Similarly, let's consider the second configuration. The top half has word order abc no matter how we divide it, and the bottom half again can only be divided vertically. In fact, because of the space, the only way to divide the bottom half is

Spoken order: abceijgk
So there are 3 distinct spoken orders for the first two configurations: abecgijk, aebcgijk, and abceijgk. The third and fourth configurations are symmetric to these (along the diagonal from the upper left to the lower right), and give another 3 spoken orders.
B. I4. Partial credit for 64.
C. 48. Partial credit for 770 .
D. 274. Partial credit for 19,450 .

Problems 4B-4D. encouraged you to systematically consider all ways that a large linguistic structure could have been built up from smaller ones.

Computer programs must do this in order to diagram, understand, or translate a sentence, even if it's a onedimensional sentence. In effect, they consider all possible structures and use statistics to guess which one is right. But there are very many possible structures. The programs are clever enough that they manage to find the best structure without considering the structures one by one.

Similarly, you can figure out how many Twodee structures there are without counting them one by one. The Twodee problem lets you think about such algorithms in a pure form. You don't have to worry about the specific grammar rules of a particular language. And because you're only counting structures, you don't have to guess which one is right.

The key idea is that a large Twodee rectangle can be divided into two smaller Twodee phrases in multiple ways -- anywhere you can draw a horizontal or vertical line.

Consider one such division. If the first phrase has 7 possible spoken orders, and the second phrase has 5 possible spoken orders, then overall that division has $7.5=35$ spoken orders. Multiplication is the trick that lets us avoid counting them individually.

(H) Twodee (9/I0)

You have to add this 35 to the numbers you'd get from other divisions.
But where did those numbers 7 and 5 come from? From solving smaller versions of the problem (counting the number of orderings for the smaller rectangles). So the answer to problem d. builds on the answer to c., which builds on the answer to b.

By following this recipe instinctively by hand, it is possible to work out particular solutions to 4B-4D. But for generality, let's now write down the exact recipe for any grid with M rows and N columns. We will use the fact that there are no spaces and no repeated words.

First, let's solve the easier problem of counting the number of divisions (drawings with nested boxes). Let's write $f(M, N)$ for the number of divisions. Then

$$
\begin{array}{rll}
f(M, N)= & 1 & \text { if } M=I, N=I \text { (no divisions) } \\
& +\sum_{i=1}^{M-1} & f(i, N) \cdot f(M-i, N)
\end{array} \text { if } M>I \text { (sum over horizontal divisions) }
$$

It is not too slow to build up the f values up through $f(4,4)$, especially if you use the fact that $f(M, N)=f(N$, $M)$ by symmetry. Here for your interest is an even larger table of f values.

$f(1, I)=1$	$f(1,2)=1$	$f(1,3)=2$	$f(1,4)=5$	$f(1,5)=14$
$f(2,1)=1$	$f(2,2)=2$	$f(2,3)=8$	$f(2,4)=45$	$f(2,5)=318$
$f(3,1)=2$	$f(3,2)=8$	$f(3,3)=64$	$f(3,4)=770$	$f(3,5)=13,008$
$f(4,1)=5$	$f(4,2)=45$	$f(4,3)=770$	$f(4,4)=19,450$	$f(4,5)=729,148$
$f(5, \mathrm{l})=14$	$f(5,2)=318$	$f(5,3)=13,008$	$f(5,4)=729,148$	$f(5,5)=57,378,464$

We gave partial credit for answers from this table. However, while f accurately counts the number of divisions, it overcounts the number of spoken orderings. For example, $f(1,3)=2$ because abc can be divided into $\mathbf{a b} \mid \mathbf{c}$ or $\mathbf{a} \mid \mathbf{b c}$, and yet both of these divisions happen to give the spoken ordering $\mathbf{a b c}$.

To block the extra orderings, let's impose a restriction that if you divide a rectangle into 3 vertical stripes, for example, as we did with abc, then you have to divide it as a | bc rather than $\mathbf{a b} \mid \mathbf{c}$. Both give the same ordering. The general rule is that if you divide the rectangle vertically, you can't then immediately divide the first half vertically again, although you can still do so to the second half. We impose the same restriction on horizontal divisions.

(H) Twodee (10/I0)

So let's define a new function $g(M, N, T)$ where T has one of the following values:
all: count all orderings.
noH: exclude orderings whose top-level division is horizontal.
noV: exclude orderings whose top-level version is vertical.

$$
\begin{aligned}
& f(M, N, T)=1 \\
& \quad+\sum_{i=1}^{M-1} f(i, N, n o H) \cdot f(M-i, N, \text { all }) \\
& \quad+\sum_{j=1}^{N-1} f(M, j, n o V) \cdot f(M, N-j, \text { all })
\end{aligned}
$$

if $M=I, N=I$ (no divisions)
if $M>\mathrm{I}$ and $T \neq \mathrm{noH}$ (sum over horizontal divisions)
if $N>I$ and $T \neq$ noV (sum over vertical divisions)

This gives us the following values. Note that as you might expect, $g(M, N$, all $)=g(M, N, n o H)+g(M, N, n o V)$ except when $M=N=1$. Also, by symmetry, $g(M, N, n o H)=g(N, M, n o V)$.

$g(\mathrm{I}, \mathrm{l}, \mathrm{all})=$		$g(1,2, a l l)=$	$g(1,3, \mathrm{all})=$	$g(1,4, \mathrm{all})=$	$g(1,5$, all $)=$	
$g(2, \mathrm{I}, \mathrm{all})=$		$g(2,2$, all $)=2$	$g(2,3, \mathrm{all})=4$	$\mathrm{g}(2,4, \mathrm{all})=8$	$g(2,5, \mathrm{all})=16$	
$g(3, \mathrm{l}, \mathrm{all})=$		$g(3,2$, all $)=4$	$g(3,3$, all $)=14$	$g(3,4, \mathrm{all})=48$	$g(3,5, \mathrm{all})=164$	
$g(4, \mathrm{I}, \mathrm{all})=$		$g(4,2, \mathrm{all})=8$	$g(4,3, \mathrm{all})=48$	$g(4,4, \mathrm{all})=274$	$g(4,5, \mathrm{ll})=1,548$	
$g(5, \mathrm{I}, \mathrm{all})=$		$g(5,2, \mathrm{all})=16$	$g(5,3, \mathrm{all})=164$	$g(5,4, \mathrm{all})=1,548$	$g(5,5, \mathrm{all})=14,294$	
$g(\mathrm{I}, \mathrm{I}, \mathrm{noH})=$		$g(1,2, n o H)=$	I $g(1,3, \mathrm{noH})=$	I $g(1,4, n o H)=$	I $g(1,5, n o H)=$	
$g(2, \mathrm{I}, \mathrm{noH})=$	0	$g(2,2, n o H)=$	I $g(2,3, \mathrm{noH})=$	$3 \mathrm{~g}(2,4, \mathrm{noH})=$	$7 \mathrm{~g}(2,5, \mathrm{noH})=$	
$g(3, \mathrm{I}, \mathrm{noH})=$	0	$\mathrm{g}(3,2, \mathrm{noH})=$	I $g(3,3, \mathrm{noH})=$	$7 \mathrm{~g}(3,4, \mathrm{noH})=$	$33 \mathrm{~g}(3,5, \mathrm{noH})=$	
$g(4, \mathrm{I}, \mathrm{noH})=$	0	$g(4,2, n o H)=$	I $\mathrm{g}(4,3, \mathrm{noH})=$	$15 \mathrm{~g}(4,4, \mathrm{noH})=$	$137 \mathrm{~g}(4,5, \mathrm{noH})=$	1,011
$g(5, \mathrm{I}, \mathrm{noH})=$	0	$g(5,2, n o H)=$	I $g(5,3, \mathrm{noH})=$	$31 \mathrm{~g}(5,4, \mathrm{noH})=$	$537 \mathrm{~g}(5,5, \mathrm{noH})=$	7,147
$g(I, I, n o V)=$		$g(1,2, n o V)=0$	$g(1,3, n o V)=0$	$g(1,4, n o V)=0$	$g(1,5, n o V)=0$	
$g(2, I, n o V)=$		$g(2,2, n o V)=$	$g(2,3, n o V)=$	$g(2,4, n o V)=$	$g(2,5, n o V)=$	
$g(3, \mathrm{I}, \mathrm{noV})=$		$g(3,2, n o V)=3$	$g(3,3, n o V)=7$	$g(3,4, n o V)=15$	$\mathrm{g}(3,5, \mathrm{noV})=31$	
$g(4, I, n o V)=$		$g(4,2, n \mathrm{~V})=7$	$g(4,3, n o V)=33$	$g(4,4, n o V)=137$	$g(4,5, n \circ V)=537$	
$g(5, \mathrm{I}, \mathrm{noV})=$		$g(5,2, n \circ V)=15$	$g(5,3, \mathrm{noV})=133$	$g(5,4, n \circ V)=1,01 \mid$	I $g(5,5, n \circ V)=7,147$	

The answers to questions $4 \mathrm{~B}-\mathrm{D}$. are $g(3,3$, all $)=14, g(3,4$, all $)=48$, and $g(4,4$, all $)=274$.

